

New Era of Panel Based Technology for Packaging, and Potential of Glass

Shin Takahashi

Technology Development General Division Electronics Company

Connecting the World

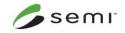
Connecting the World

Smart Mobility

Green Energy /Environment BIG DATA

Smart Factory

Smart Mobile Devices Wearable Devices Wireless (5G)


AI & IOT & SENSORS

Security/Biometrics

Medical

Glass and Electronics

Designing /Decorative material	Opening material Laboratory glass	Display devices Optical component	Human interface devices
			<image/>

0

Glass Benefit for Semiconductor Packaging

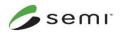
High Resistivity and Electrically Low Insertion Loss

Glass Passive Device Source: STmicroelectronics

Transparency

Possibility of high volume and low cost based on panel size manufacturing

Dimensional Stability


Transceiver using TGV (Through Glass Vias) Source: Fraunhofer IZM, GIT2015

FOPLP using Glass Carrier Source: Sangyo Times

Demonstrator

ech

Transition to Panel Level Manufacturing

FOWLP/FOPLP

<u>TGV</u>

FOWLP/PLP R&D activities around the world

Fraunhofer IZM's PLP Consortium

Manufacturing line to transfer PLP technology to industry Focusing on Mold first approach

AGC

Datacon evo2200/ ASM Siplace CA3

Mahr OMS 600/ IMPEX proX3

WL: Towa up to 8" PL: APIC up to 18"x24" incl. 12" WL

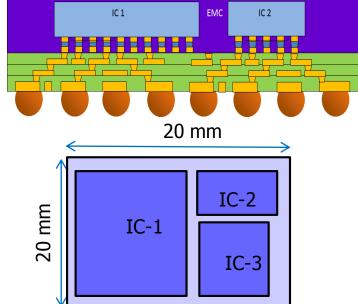


Lauffer/

Bürkle

Siemens Microbeam/ Schmoll Picodrill with HYPER RAPID 50

Source: A*STAR IME, Modified by AGC


FOWLP/PLP R&D activities around the world

<u>A*STAR IME's FOPLP Consortium</u>

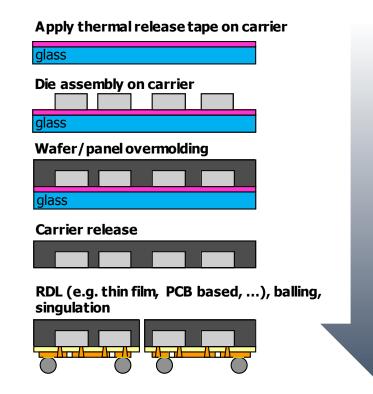
Focusing on RDL first approach Plan to establish complete panel line by 2017

- Development of complete packaging process flow with Gen-3 panel
- Qualifying tools and materials for panel-base Fan-out multi-chip packaging

Package Specifications for Phase-1		
Target App	Tablet, smart phones	
Package	20mm x20mm	
Package thickness	450um	
# of I/O	2400	
# of chips/Pkg	3	
Panel size	550 mm x 650 mm	
RDL L/S	2 layers, (10/10, 5/5 um)	
Benefits	Higher throughput $ ightarrow$ lower cost	
Challenges	Handling large panel	
Reliability	MSL3, TCOB 1000 cycles	

Note: * Spec to be finalized with consortium members

AG



Glass Carrier for FOWLP/PLP Manufacturing

Mold first

- Carrier for assembly and molding
- Temporary carrier for RDL processing (thin wafer handling, warpage compensation)

RDL first

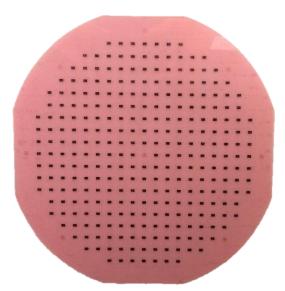
Carrier for RDL build-up, assembly and molding

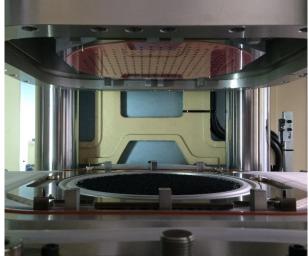
Glass Lineup for FOWLP/FOPLP Carrier

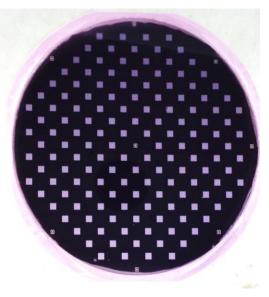
	3~4 ppm/C	4~5 ppm/C	5~6 ppm/C	6~7 ppm/C	7~8 ppm/C	8~9 ppm/C	9~10 ppm/C	10~11 ppm/C	11~12 ppm/C
Alkali free									
Alkali									

Representative specification for 300mm glass carrier wafer

	Specification	Note
TTV	≦5µm	High spec: ≦1µm
Ra	≦1.5nm	High spec: ≦0.5nm
Warpage	≦100µm	High spec: ≦50µm



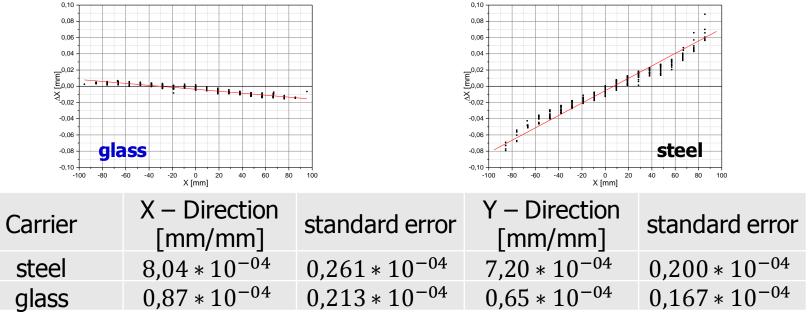



FOWLP Assembly & Molding with Glass Carrier

Assembled glass carrier with thermo-release tape

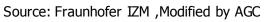
Compression molding of assembled glass carrier

Molded glass carrier before carrier release


Source: Fraunhofer IZM ,Modified by AGC

Die Shift Test Result

Die Shift Factor Comparison on Wafer between Glass (6,8 ppm/K by AGC) and Steel (12 ppm/K)



Die Shift Factor:

Linear displacement of dies after molding (CTE EMC = \sim 8 ppm/K)

- -> mainly due to CTE mismatch and chemical shrinkage of EMC.
- \Rightarrow Die shift on the glass carrier is much lower than on the steel carrier.

<u>Challenge: Robustness of glass carriers</u>

AGC

🗾 Fraunhofer

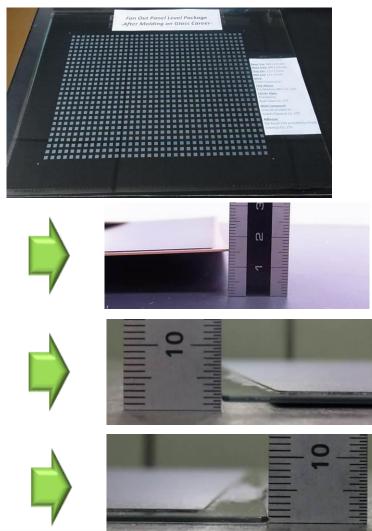
Panel

Level Packaging

CONSORTIUN

IZM

FOPLP Warpage Test Results

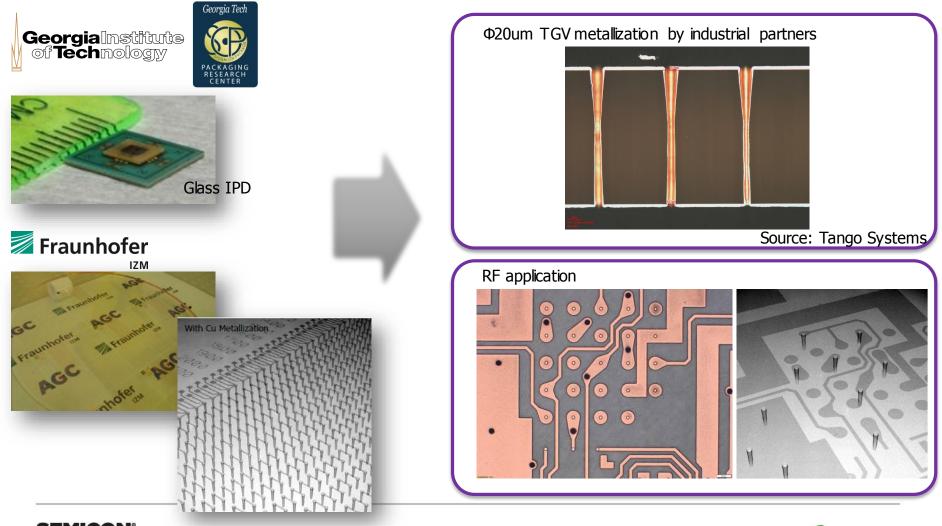

Panel size : $660 \times 515 \text{ mm x 1 mmt}$ Die size : $7.3 \times 7.3 \text{ mm}$ (945 pieces) Mold area : $640 \times 495 \text{ mm x 0.4 mmt}$

- Die Mount @ Fuji Machine Mfg.
- Compression mold @ TOWA
- Carrier : Glass (AGC)
- Organic substrate (Hitachi Chemical)

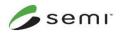
Warpage: 15mm EMC: Film type (CTE: 8 ppm/C) Carrier: Organic substrate (CTE: 6 ppm/C)

Warpage: 3.0mm EMC: Film type (CTE: 7 ppm/C) Carrier: Glass (CTE: 9.6 ppm/C)

Warpage: -1.35mm EMC: Granule type (CTE: 7 ppm/C) Carrier: Glass (CTE: 8.3 ppm/C)

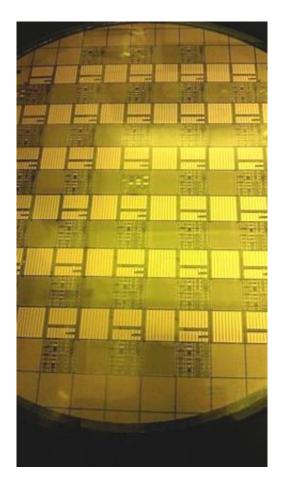


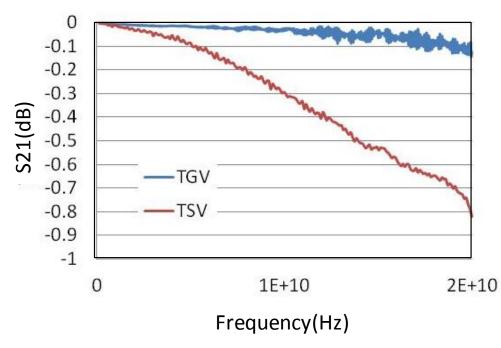
Lab to Fab, TGV is getting to launch



TGV is moving to panel size

	Wafer	Panel
	200mm dia.	300mm x 400mm
Size	6inch, 8inch, 12inch	~550mm x 650mm (Gen-3)
Thickness	100~500um	100~500um
Representative Hole Size	φ20~150um	φ65~150um
Hole Pitch	Minimum 2x Hole Diameter	Minimum 2x Hole Diameter
TGV Metallization	Cu conformal plating, Cu full-filled plating, and Cu paste filling	Cu conformal plating

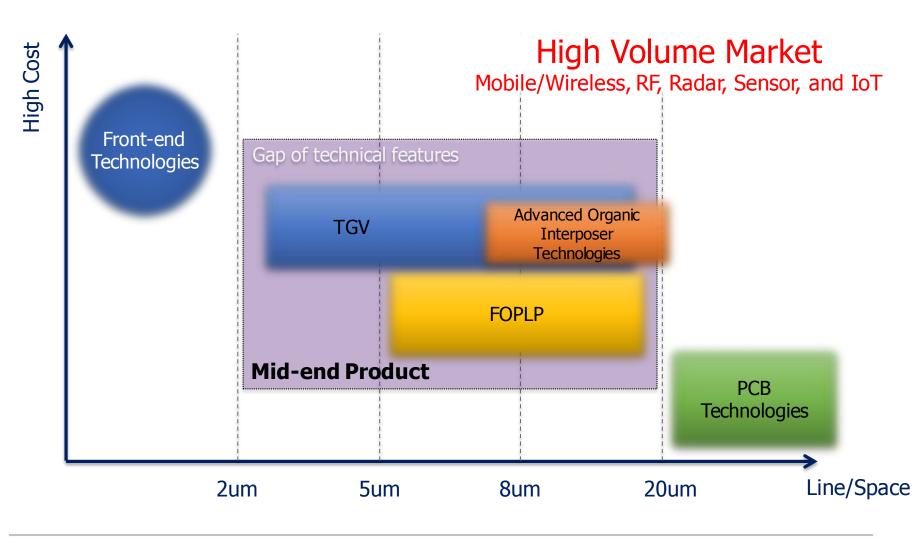




TGV contributes to miniaturized RF devices

Highly bulk resistance of TGV resulted in insertion loss less than -0.12dB at 20GHz.

Source: Dai Nippon Printing


Where Panel Technologies go

The necessity of panel technologies

Summary

- R&D consortium for FOPLP using large glass carrier is taking off. Glass panel is a good candidate as carrier material because of flat surface and an availability of different CTE.
- TGV is moving to panel size up to Gen-3 from wafer size. RF is a possible application based on better material properties (low insertion loss) of glass.
- Panel technologies will be an important to realize high volume manufacturing for mid-end products in a future connected world.

"Look Beyond" Glass is only the Beginning. AGC

